Wavelet Signs: A New Tool for Signal Analysis
نویسندگان
چکیده
We propose a new analysis tool for signals, called signature, that is based on complex wavelet signs. The complexvalued signature of a signal at some spatial location is defined as the fine-scale limit of the signs of its complex wavelet coefficients. We show that the signature equals zero at sufficiently regular points of a signal whereas at salient features, such as jumps or cusps, it is non-zero. We establish that signature is invariant under fractional differentiation and rotates in the complex plane under fractional Hilbert transforms. We derive an appropriate discretization, which shows that wavelet signatures can be computed explicitly. This allows an immediate application to signal analysis.
منابع مشابه
Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملWavelet Transformation
Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation. Introduction: The...
متن کاملHigh impedance fault detection: Discrete wavelet transform and fuzzy function approximation
This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملImproved Knock Detection Method Based on New Time-Frequency Analysis In Spark Ignition Turbocharged Engine
Premature combustion that affects outputs, thermal efficiencies and lifetimes of internal combustion engine is called “knock effect”. However knock signal detection based on acoustic sensor is a challenging task due to existing of noise in the same frequency spectrum. Experimental results revealed that vibration signals, generated from knock, has certain frequencies related to vibration resonan...
متن کامل